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Introduction 
 
ProACT2 (Protein Accessibilities, CaviTies and ConTacts) is a program for structural analysis of proteins, 
and protein-ligand and protein-protein complexes. Analysis is in terms of solvent accessibility and explicit 
hydration sites, cavities and polar and apolar contacts within and between the molecules. 
 
ProACT2 is a reimplemented, refined and considerably functionally enhanced Python version of the earlier 
Fortran program ProACT for the analysis of solvation and cavities in proteins. 
 
Rationale 
 
The main ideas underlying the ProACT2 methodology were first described in  
 

“Buried waters and internal cavities in monomeric proteins” 
Williams MA, Goodfellow JM & Thornton JM (1994) Protein Science 3, 1124-1135. 

 
Namely, that distances between atoms in proteins are strongly peaked for a small range of short distances. 
This non-random distance distribution is attributable to repulsion at very short distances and an attractive 
interaction that is physically dominant at slightly longer distances. Such distance distributions also show two 
other features: that the distances over which there is a dominant attractive effect vary depending on the 
chemical nature (types) of the atoms investigated and that atoms in polar chemical groups (e.g. C=O) show 
two distinct peaks in their distance distributions with the peak at shorter distances attributable to an 
enhancement of the attractive interaction in certain local environments by hydrogen-bonding (Coulombic) 
forces and that at longer distances being where only the van der Waals dispersion is important. Being polar, 
water molecules around proteins exhibit this double peaked behaviour.  
 
These observations are taken to have several consequences: 
 
Contact can be defined in an empirically derived, physically significant way as the range of distances over 
which a non-random atom-atom distance distribution is observed. 
 
Contacts in which Coulombic interactions are likely to be significant (polar) can be distinguished from those 
which are likely to be dominated by van der Waals interaction (apolar) on the basis of distance. 
 
That the traditional approach to determining a solvent accessible surface through ‘rolling’ a 1.4Å sphere over 
the surface of spherical protein atoms with fixed radii gives an inaccurate view of likely locations of hydrating 



water molecules and that a more realistic model can be provided by varying the effective size of water 
dependent on local chemical environment. 
 
Atomic radii, contact, cavities and solvation 
 
In a similar way to that in which van der Waals radii are usually derived, analysis of atom-atom distance 
distributions of atoms of different type, together with an assumption of additive radii, allows us to represent 
the contact distance criteria as sums of atomic radii.  
 

• Each apolar atom-type is represented by three radii related to the minimum, maximum and most 
probable (characteristic) observed separation of atoms. 

• The furthest separation which can be considered to be a contact is the sum of the atoms’ maximum 
apolar radii.  

• Apolar atoms are most likely to be found at a distance equal to the sum of their characteristic apolar 
radii 

• Atoms should not approach closer than the sum of their minimum apolar radii 
• Cavities occur in regions of space which lie between atoms but outside the surfaces defined by their 

maximum atomic radii.  
• Cavities can be represented by pseudo-atoms which grow until they ‘touch’ the surrounding atoms at 

the surface defined by their characteristic apolar radii. Consequently contacts of atoms with cavities 
can be identified in a similar way to contacts between atoms. 

• Polar atoms (including water) have two groups of radii one describing their behaviour in interaction 
with apolar atoms and one where the Coulombic interactions are important. Polar atoms are 
effectively smaller when involved in a hydrogen-bond or Coulombic interaction. 

 
 
 
 
 
Polar atoms separated by less than the sum of 
their maximum polar radii (MPR) are in polar 
contact. If separation is greater than this, but 
less than the sum of their maximum apolar radii 
(MAR), they are in apolar contact. 
 
 
 
 
 
 

 
Atomic Radii Sets 
 
The original publication contained six atom types: C, S, O, N, W(ater), P(everything else) with O, N and W 
able to undergo polar interaction and having two groups of radii. Our set of radii appeared to perform 
reasonably well when analyses were restricted to protein hydration and cavities. These radii may be used by 
specifying the –radii WILLIAMS  option on the command line. 
 
Subsequently, Li & Nussinov carried out a more systematic and extensive analysis of atom-atom distance 
distributions including a new method for removing the influence of secondary contacts on the distributions 
(i.e. not including a particular atom-atom distance in the distribution when there is a shorter distance 
between atoms to which they are directly covalently bonded). The generalized Li & Nussinov radii are 
default for ProACT2. 
 

“A set of van der Waals and coulombic radii of protein atoms for molecular and solvent accessible surface 
calculation, packing evaluation and docking.” 

Li AJ & Nussinov R (1998) Proteins 32, 111–127. 



Installation 

 
Dependencies 
 
Download proACT2.tgz from http://people.cryst.bbk.ac.uk/~ubcg66a/proact2_summary.html  
 
In order for ProACT2 to work you need: 
 
1. Python 2.4, 2.5 or 2.6 (http://www.python.org) 
2. NumPy 1.2 or greater (http://numpy.scipy.org) 
2. BioPython 1.50 or greater (http://biopython.org) 
 
Default installation of these packages requires root (Linux & Mac OSX) or Administrator (Windows) 
privileges. Windows installers are available. An appropriate version of Python is very likely to be available by 
default on recent Linux and Mac OSX systems and the NumPy and BioPython modules can be also installed 
in user directories provided appropriate options are specified in the installation commands and appropriate 
paths set. Please read the installation instructions for these packages carefully. 
 
With 32-bit installations of the above packages, ProACT2 will run quicker if you also have Psyco installed 
(http://psyco.sourceforge.net/). 
 
Creation of contact maps requires installation of PyX (http://pyx.sourceforge.net) 
 
 
Linux & Mac OSX 
 
tar xvfz proACT2.tgz 
cd proACT2 
python test.py 

 
The last command tests if ProACT2 and dependencies are installed correctly then this will report “OK””. 
Otherwise, some error message will be generated. Most problems are likely to arise from incorrect 
installation of BioPython or NumPy and this should be clear from the message.  

 
Windows 
 
Extract the contents of proACT2.tgz with WinRAR other other suitable software to a directory e.g. 
C:\Program Files\ProACT2 
 
At the command prompt, check that the path to python is known with  
 
echo %PATH% 

 
if not, add location of your python installation with something similar to 
 
set PATH=%PATH%;C:\Program Files\Python2.5.1 

 
Add location of ProACT2 
 
set PYTHONPATH=%PYTHONPATH%;C\Program Files\ProACT2  
 

run test.py from your python environment 
 



Running ProACT2 
 
ProACT2 is run from the command line with a variety of option flags. The minimal command  
 
python proACT2.py example.pdb  

 
acts on a PDB format protein structure file (identified by .pdb or .ent suffix) and will give six outputs. 
 
1. example_summary.txt 
 
Number of protein 1 atoms              : 1001 
Number of protein 2 atoms              : 0 
Number of ligand atoms                 : 0 
Number of total contacts               : 4104.0 
Number of polar contacts               : 438.0 
Number of apolar contacts              : 3666.0 
Number of polar water contacts         : 445.0 
Number of apolar water contacts        : 821.0 
Number of polar surface water contacts : 407.0 
Number of apolar surface water contacts: 710.0 
Number of polar cleft water contacts   : 33.0 
Number of apolar cleft water contacts  : 80.0 
Number of polar buried water contacts  : 5.0 
Number of apolar buried water contacts : 31.0 
Number of polar cavity contacts        : 47.0 
Number of apolar cavity contacts       : 141.0 
Probe volume                           : 238.368 
Surface waters                         : 498 
Cleft waters                           : 16 
Buried waters                          : 4 
Further waters                         : 0 

 
2. example_access.pdb – pdb format file annotated with atomic solvent accessibilities  
3. example_waters.pdb – computationally modelled water molecules 
4. example_cavity.pdb – cavity defining pseudoatoms 
5. example_access.rsa – residue by residue apolar and polar accessibility information 
6. example_residue_contacts.csv – file containing list of residue to residue/water/cavity contacts 
 
A log file is also generated and summary information is copied to all_runs.csv. This latter file is never 
overwritten which is helpful when running a series of calculations. 
 
 
Residue and chain selection 
The default behaviour is to carry out calculations on all structures in the PDB file. Chains and residues from 
the PDB file may be specifically selected e.g. residues 1 to 83 from chain A. 
 
python proACT2.py example.pdb –-chain_sel1 A –-res_ sel1 1:83 

 
In cases of multiple conformations of protein residues, the conformations with highest occupancy are 
extracted. Some care should be taken when interpreting results if structural information for some atoms or 
residues are not given in the PDB file due to disorder. 
 
Examples  
Several examples of how to run proACT2 and associated output can be found in the examples 
subdirectories (the command line in each case is given in the run_me.sh file).  
 

binding_site – calculations restricted to ligand binding site alone 
complex – contacts and experimental water categorization on protein-ligand complex 
ligand – hydration and accessibility of a free ligand 
protein – calculations on a protein 
protein_protein – the interface between two protein chains or other subset of residues 

 

Help 
 
For more help run the command:         python proACT2.py -h  



Solvent Accessibility 
 
Atomic accessible surface areas are output as default in the example_access.pdb file replacing the B-factor 
values. In order to turn this off, use the option --no_access An additional output file example_access.rsa 
summarises accessibilities on a residue by residue basis. In the case of complexes (see later section), this 
can optionally include information on the apo and bound states or on changes upon complex formation.  
 
example_access.rsa 
 
REM SOLVENT ACCESSIBILITY CALCULATED BY PROACT2 
REM RESIDUE SOLVENT ACCESSIBILITY 
REM RES _  NUM       TOT    APOLAR     POLAR 
RES GLU A  534    137.38     34.26    103.12 
RES GLU A  535    117.24     57.30     59.94 
RES GLU A  536     69.17     20.90     48.27 
RES THR A  537     71.46     45.81     25.64 
RES ARG A  538    146.85     56.80     90.04 
RES GLU A  539     57.96     24.77     33.19 
RES LEU A  540     24.20     24.20      0.00 
RES GLN A  541    103.25     24.42     78.84 
RES SER A  542     36.85     15.73     21.12 
RES LEU A  543      0.75      0.00      0.75 
RES ALA A  544     30.38     16.80     13.58 
RES ALA A  545     91.46     63.55     27.91 
RES ALA A  546     28.44     19.39      9.05 
RES VAL A  547    137.63    133.71      3.92 
RES VAL A  548     41.26     22.91     18.35 
RES PRO A  549     31.02     31.02      0.00 
RES SER A  550     53.98     40.86     13.12 
RES ALA A  551     13.72     10.56      3.17 

 
N.B. As with any surfacing method these values are intended for use in structure description and 
interpretation, and like-for-like comparison. You cannot sensibly use these surface area values as input to 
empirical formulae for stability etc. where those formulae were derived using another solvent accessible 
surface methodology or different radii set. 
 

Solvent Accessible Surface 
 
The --surface option outputs an example_surface.dms file in DMS (dot molecular surface) format, suitable for 
direct import into a variety of visualization packages (e.g. UCSF Chimera). This surface corresponds exactly 
to the surface area calculations above. 

                                        



Hydration of Protein Exterior Surface and Cavities 
 
Having determined solvent accessible surface points, water molecules are placed at these points filling the 
protein surface. In ProACT2, water molecules are successively added at the position at which they can make 
the most polar interactions. Because previously placed water molecules can themselves participate in polar 
interactions, the priority list is iteratively revised during insertion – this slows performance of the analysis, but 
gives better water positions in comparison to experiment (T.S.G. Olsson – PhD thesis, University of London, 
2007).  
 
ProACT2 allows the addition of one or two layers of water e.g. --layers 2 (default 1). Two layers of water are 
very often beneficial in investigation of concave ligand binding sites.  
 
The hydration procedure is not deterministic as there may be many positions at which a particular number of 
polar contacts can be made. ProACT2 can automatically repeat the hydration process several times so that 
a statistical view can be taken of the consistency of hydration of any site e.g. --runs 10 (default 1).  
 
 

Surface, Cleft and Buried Water Molecules 
A key topic of the original publication (Willliams, 1994) was the categorization of experimental surface, cleft 
and buried waters, following the scheme below 
 
python proACT2.py --experimental_waters example.pdb  

 
Both experimental and modelled waters are output to example_waters.pdb, experimental waters are given a 
b-factor of 1.00 and modelled waters a b-factor of 0.00. Categorization is denoted in the chain id column of 
the pdb format output further (F), surface (1), cleft (2,3,4 etc.), buried (0). For other water related output see 
also example_waters.kin. 
 

 
Left: Schematic view of water molecule categorization (‘further’ water molecules lie beyond the surface water 
layer) Right: Two layers of hydration are required to fully hydrate the peptide binding cleft in HIV protease 
(waters coloured according to category) 
 
It is recommended to perform repeated hydration cycles (e.g. --runs=10) in order to categorized experimental 
water molecules. In critical cases categorization of experimental waters (surface, buried, cleft) should be 
carried out using information from all repeats and the most conservative categorization used e.g. waters 
should be though of as buried only if they are buried in all repeats. Following this conservative principle, it is 
also recommended, and perhaps even more important, to use two solvent layers for categorization purposes 
e.g.. 
 
python proACT2.py example.pdb --experimental_waters  --layers=2 --runs=10 
 
 
N.B. The solvent accessible suface option --surface negates the --experimental_waters option. 



Cavities 
 
Cavities are defined by spherical pseudo-atoms whose centres lie in regions of space outside the surfaces 
defined by maximum apolar radii of protein and ligand atoms and surface or cleft water molecules. 
 
The cavity pseudo-atoms grow from their centre until their surface touches the surface of surrounding atoms 
and water molecules defined by their characteristic apolar (van der waals) radius. A similar method has 
recently been implemented in RosettaScore. In ProACT2, these pseudo-atoms may overlap by a distance of 
up to half their radius. This gives a closer approximation to the cavity shape. 

 
 
 
 
Cavities in hen egg white lysozyme as white 
spheres. Blue spheres are experimental cleft and 
buried (darkest blue) water molecules. 
 
 
 
 
 
 
 
 
 

 

Contacts 
 
A list of the apolar and polar contacts made between protein residues and with ligands, water molecules and 
cavity pseudoatoms is output in CSV format suitable for import in to common spreadsheet programs. Apolar 
and polar contacts are not double counted and polar contacts take precedence 
 
"resid1","resname1","chain1","resid2","resname2","c hain2","polar contacts","apolar contacts" 
612,"TYR","A",613,"HIS","A",0,6 
612,"TYR","A",617,"HIS","A",1,1 
612,"TYR","A",782,"VAL","A",0,2 
612,"TYR","A",2,"HOH","1",1,0 
612,"TYR","A",13,"PPP","P",0,1 
613,"HIS","A",612,"TYR","A",0,1 
613,"HIS","A",5,"HOH","1",1,0 
617,"HIS","A",612,"TYR","A",0,2 
617,"HIS","A",621,"THR","A",0,1 
617,"HIS","A",764,"ASP","A",0,2 
661,"SER","A",660,"VAL","A",0,1 
661,"SER","A",662,"ASN","A",0,1 
661,"SER","A",10,"HOH","1",0,1 
661,"SER","A",11,"HOH","2",0,1 
725,"LEU","A",724,"ASP","A",0,1 
725,"LEU","A",726,"ALA","A",0,1 
725,"LEU","A",9999,"LIG","Z",0,1 

 
The CSV file contains summary information at the ‘residue’ level i.e. in the above example output Tyr612 
chain A makes 6 apolar contacts with His613 Chain A, Tyr613 makes a single contact to a cavity pseudo 
atom PPP13, His613 makes 1 polar contact with water molecule 5, which is at the surface (chain id 1). 
Usually this would be all of the information required. However, contacts are also listed atom-by-atom when 
using the Kinemage visualization options for interface analysis (see later section). 



 

Contact Maps 
 
A utility is provided to generate Postscript and PDF (default) figures representing the information held in the 
contact CSV file. All contacts are plotted with  
 
python contact_plot.py example.csv 

 
For intermolecular contacts it makes more sense to select subsets of residues by chain 
  
python contact_plot.py example.csv -x A-1:30 –y B-2 6:200 

 
i.e. plot contacts between chain A residues 1:30 (on x-axis) and chain B residues 26:200 (on y-axis). 
The residue-residue/water/cavity contacts are displayed as circles the area of which depends linearly upon 
the number of contacts. Given that there are many more apolar atoms and thus contacts than polar, the 
areas for each type are scaled differently.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additional details on options can be obtained with 
 
python contact_plot.py -h  



Protein-Ligand and Protein-Protein Complexes 
 
ProACT2 has several new features for analysing the interaction interfaces (binding-sites) of complexes. 
 
An interface is defined as comprising those residues from different molecules whose constituent atoms are in 
contact or which could contact a common water molecule or cavity defining pseudo-atom.  
 
In identifying protein residues as belonging to an interface, test water molecules are placed at all ligand 
solvent accessible surface positions i.e. all possible positions for a bridging water molecule to occur are 
evaluated (these test waters are output in the kinemage file binding_site_waters.kin).  
 
Interactions with small-molecule ligands 
 
python proACT2.py --only_binding_site example.pdb e xample.mol2 

 
makes calculations on the complex including only the ligand, solvating water and protein residues in direct or 
indirect (bridged) contact. Protein residues involved in the binding site are given in the left-hand column of 
*_contacts.csv file.  
 
Small molecule ligands must be represented as mol2 format files. This is a slight inconvenience for those 
used only to dealing with PDB format structures, but fits better with the workflows of most small molecule 
interaction studies e.g. in drug design and docking. mol2 format can be created from PDB by simply using a 
text editor or script to extract the relevant HETATM records from the PDB file and converting them using 
babel (http://openbabel.org/wiki/Main_Page) 
 
babel -ipdb -omol2 ligand.pdb 

 
(N.B. This mol2 file will not necessarily contain correct information on bond-types (single double etc.) since 
this is not recorded in the originating PDB data, but that is not important for calculations carried out by 
ProACT2. It may be necessary to use more specialist tools, e.g. Sybyl, ICM, if you also want to use the mol2 
file for other purposes.) 
 
python proACT2.py --only_binding_site --complex_for mation example.pdb example.mol2 

 
outputs results of calculations for the complex, the protein and ligand separately, and reports on changes in 
interactions and hydration upon complex formation in the summary file. 
 
Interactions between proteins 
 
python proACT2.py --only_interface exampleA.pdb exa mpleB.pdb 

 
reports on the interactions between the protein in the first pdb file and that from the second. This presumes 
that relevant components of a complex has been manually separated into different pdb files. Alternatively, 
chains can be select from the same file  
 
python proACT2.py --only_interface --chain_sel1 A - -chain_sel2 B example.pdb example.pdb 

 
Again the --complex_formation flag will lead to calculations on the separate chains in addition to the 
complex. 
 
 
 
 



Kinemage visualization 
 
Kinemage scripts are output with the --kinemage option.   
 
ProACT2 generates four kinemage files: 
 
1. *_accessibility.kin (displays solvent and probe accessibilities) 
2. *_contacts.kin (displays polar and apolar contacts) 
3. *_probes.kin (displays voids in structures) 
4. *_waters.kin (displays waters in and around structures) 
 
The kinemage (kinetic image) file format allows the build up of 3D diagrams in a simple and comprehensible 
fashion. It is essentially a mark up language for creating 3D displays (in the same fashion html is a mark up 
language for creating web pages). 
 
There are two 3D visualisers available for displaying the content of kinemage files: Mage 
(http://kinemage.biochem.duke.edu/software/mage.php) and the more recent King 
(http://kinemage.biochem.duke.edu/software/king.php). 
 
A basic kinemage file displaying some points would look like: 
 
@kinemage 
 
@dotlist {some_points} 
{} 0.0 0.0 0.0 
{} 1.0 0.0 0.0 
{} 0.0 1.0 0.0 
{} 0.0 0.0 1.0 
 
The markup text @dotlist represents the type of 3D primitive the coordinates should be represented as, in 
this case as dots or points. The text in the curly brackets (directly after @dotlist) gives a group name to the 
set of points defined below it. Alternative representations for visualising coordinates in space are @balllist 
("psedo" spheres) and @spherelist ("real" spheres). Lines can be represented using the 3D primitive 
@vectorlist. 
 
Building on the previous example: 
 
@kinemage 
 
@dotlist {some_points} 
{origin} 0.0 0.0 0.0 
{x} 1.0 0.0 0.0 
{y} 0.0 1.0 0.0 
{x} 0.0 0.0 1.0 
 
@vectorlist {axis} 
{} P 0.0 0.0 0.0 {} 1.0 0.0 0.0 
{} P 0.0 0.0 0.0 {} 0.0 1.0 0.0 
{} P 0.0 0.0 0.0 {} 0.0 0.0 1.0 

 
Notice that we have given the individual points in the @dotlist names in curly brackets (origin, x, y and z). 
These names will now be displayed when clicking on the points in either Mage or King. Also notice that for 
each pair of points making up a line the first set of coordinates is preceded by the letter P. This is so that 
each pair of points will draw one distinct line. If the P was omitted a single line would simply be drawn from 
point to point until the keyword P was encountered. For example to draw a line from x to y to z and back to x 
again the following would suffice: 
 
@vectorlist {single_line} color= red 
{} P 1.0 0.0 0.0 
{} 0.0 1.0 0.0 
{} 0.0 0.0 1.0 
{} 1.0 0.0 0.0 

 
In the example above the line has been given the colour red. 
 



More information on the kinemage file format can be obtained from the official documentation 
(http://kinemage.biochem.duke.edu/php/downlode.php?filename=/downloads/PDFs/format-kinemage.pdf). 
 
In terms of converting PDB files to kinemage representations there are two tools available: molikin 
(accessible from within King) and prekin (http://kinemage.biochem.duke.edu/software/prekin.php). It is highly 
recommended to use either of these two programs to generate representations of the protein for viewing in 
tandem with the files genereated by ProACT2. Note: to view multiple kinemages at the same time in Mage or 
King use "File>>Append Kin File..." rather than "File>>Open New Kin File...". The latter overwrites any 
previously loaded kinemages. 
 
The ProACT2 kinemage files: 
 
1. *_accessibility.kin  
can be used to display solvent accessible surface (SAS), both polar (PolSAS) and apolar (ApolSAS). In 
order to conveniently associate surface points with their corresponding atoms both dots representing the 
actual surface points and lines connecting the surface points with its atom are available. Probe accessible 
surface (PSAS) and inaccessible surface (PSIAS) can also be displayed. These latter surfaces are split into 
groups defined by integers. The integer group definitions are only of interest to people who want to look at 
particular aspects of the surface classification algorithms. 
 
2. *_contacts.kin  
contains information on all contacts in the form of vectors between the contacting atoms/waters/voids as well 
as points representing the point in space midway in between the centres of the two intereacting 
atoms/waters/voids. Below are some lines from a *_contacts.kin file: 
 
@text 
This file contains vectors representing: 
1) Polar contacts 
2) Apolar contacts 
3) Polar water contacts 
4) Apolar water contacts 
5) Polar void contacts 
6) Apolar void contacts 
as well as dots representing the midpoint of contac ts. 
 
@kinemage 
@vectorlist {Polar Contacts} color=red width=3 
{ atmName= O   atmType=O resId=735 resType=PHE chai n=A } P -43.5340 36.3370 
63.5630{ atmName= N   atmType=N resId=739 resType=I LE chain=A } -45.8590 
37.6750 62.0330 
{ atmName= O   atmType=O resId=643 resType=ILE chai n=A } P -30.9350 49.2930 
75.6670{ atmName= N   atmType=N resId=647 resType=L EU chain=A } -28.9470 
47.0870 75.2210 
... 
@dotlist {Polar Contacts} color=red width=3 
{} -44.6965 37.0060 62.7980 
{} -29.9410 48.1900 75.4440 
... 

 
3. *_probes.kin  
contains information on voids in the structure. In this file the radius of the probes is easily accessible both 
from the name representing the individual probes but also from the radius (r) given at the end of each 
coordinate line. 
 
@text 
This file contains the cavity-defining pseudo-atoms . 
 
@kinemage 
@spherelist {Probes} color=purple 
{ 1 r=1.7106 } -35.0240 33.2173 71.8311 r=1.7106 
{ 2 r=1.6532 } -19.0322 47.6213 77.4679 r=1.6532 
... 

 
4. *_waters.kin  
contains information on the waters in the structure.The waters are split into four groups: buried, surface, cleft 
and further. Note that the name representing the individual water molecules contains information on: the 



water type (watType=), whether the water was taken from the pdb file or not (experimental=True/False) and 
in which layer of hydration the water was added (hydLay=). 
 
@text 
This file contains the water atoms. Waters can be: 
Buried  - 0 or -1 
Cleft   - 2, 3, ..., n 
Surface - 1 
Further - -1, -2, ..., -n 
 
@kinemage 
@spherelist {Buried} color=gold radius=1.37 
{1 hydLay=1 watType=0 experimental=False} -32.7298 31.3388 57.7065 
{85 hydLay=1 watType=0 experimental=False} -33.6900  42.9858 58.4144 
... 
@spherelist {Surface} color=pinktint radius=1.37 
{4 hydLay=1 watType=1 experimental=False} -40.6547 35.2514 80.1172 
{6 hydLay=1 watType=1 experimental=False} -30.4076 29.7910 46.3844 
... 
@spherelist {Cleft} color=peachtint radius=1.37 
{2 hydLay=1 watType=3 experimental=False} -26.5654 54.6840 87.6737 
{3 hydLay=1 watType=2 experimental=False} -15.5580 15.6760 60.4820 
... 
@spherelist {Further} color=lilactint radius=1.37 

 

Licence 

This software is distributed under a Creative Commons licence which allows non-commercial use and 
redistribution of the software or a modified version of the software provided that authorship of the software is 
attributed to the Authors below and a link or reference to the original version of the software on the Authors 
website is prominently displayed. Any modified software may only be distributed under the same or similar 
license to this one. 

Full licence terms are available at  

http://creativecommons.org/licenses/by-nc-sa/3.0/ 
 
Warranties and Liabilities 
Unless otherwise mutually agreed to by the parties in writing and to the fullest extent permitted by applicable 
law, licensor offers the work as-is and makes no representations or warranties of any kind concerning the 
work, express, implied, statutory or otherwise, including, without limitation, warranties of title, merchantability, 
fitness for a particular purpose, noninfringement, or the absence of latent or other defects, accuracy, or the 
presence of absence of errors, whether or not discoverable. 
 
Except to the extent required by applicable law, in no event will licensor be liable to you on any legal theory 
for any special, incidental, consequential, punitive or exemplary damages arising out of this license or the 
use of the work, even if licensor has been advised of the possibility of such damages. 
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